

Absolute Maximum Ratings（Note 5）	
Supply Voltage（ V_{CC} ）	-0.5 V to +4.6 V
DC Input Voltage（ V_{1} ）	-0.5 V to +4.6 V
Output Voltage（ V_{0} ）	
Outputs 3－STATED	-0.5 V to +4.6 V
Outputs Active（Note 6）	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Diode Current（ I_{K} ） $\mathrm{V}_{1}<0 \mathrm{~V}$	－50 mA
DC Output Diode Current（lok）	
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$+50 \mathrm{~mA}$
DC Output Source／Sink Current	
（ $\mathrm{lOH}^{\text {／}} \mathrm{l} \mathrm{LL}$ ）	$\pm 50 \mathrm{~mA}$
DC $\mathrm{V}_{\text {CC }}$ or Ground Current per	
Supply Pin（Icc or Ground）	$\pm 100 \mathrm{~mA}$
Storage Temperature Range（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC Electrical Characteristics

Symbol	Parameter	Conditions	v_{cc} （V）	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$	2.0 1.6 $0.65 \times V_{C C}$ $0.65 \times V_{C C}$		V
V_{IL}	LOW Level Input Voltage		$\begin{gathered} \hline 2.7-3.6 \\ 2.3-2.7 \\ 1.65-2.3 \\ 1.4-1.6 \end{gathered}$		0.8 0.7 $0.35 \times \mathrm{V}_{\mathrm{CC}}$ $0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \hline \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \hline \end{aligned}$	$2.7-3.6$ 2.7 3.0 3.0 $2.3-2.7$ 2.3 2.3 2.3 $1.65-2.3$ 1.65 $1.4-1.6$ 1.4	$\mathrm{V}_{\mathrm{CC}}-0.2$ 2.2 2.4 2.2 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 2.0 1.8 1.7 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.25 $\mathrm{~V}_{\mathrm{CC}}-0.2$ 1.05		V

Symbol	Parameter	Conditions	V_{cc} (V)	Min	Max	Units
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2.7-3.6		0.2	v
		$\mathrm{l}_{\mathrm{LL}}=6 \mathrm{~mA}$	2.7		0.4	
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	3.0		0.55	
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	3.0		0.8	
		$\mathrm{I}_{\text {OL }}=100 \mu \mathrm{~A}$	2.3-2.7		0.2	
		$\mathrm{l}_{\mathrm{LL}}=6 \mathrm{~mA}$	2.3		0.4	
		$\mathrm{loL}=8 \mathrm{~mA}$	2.3		0.6	
		$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	
		$\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$	1.65		0.3	
		$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.4-1.6		0.2	
		$\mathrm{l}_{\mathrm{OL}}=1 \mathrm{~mA}$	1.4		0.35	
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.4-3.6		± 5.0	$\mu \mathrm{A}$
I_{Oz}	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.4-3.6		± 10.0	$\mu \mathrm{A}$
$\overline{I_{\text {OFF }}}$	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {C }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	1.4-3.6		20.0	
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V} \text { (Note 8) }$	$1.4-3.6$		± 20.0	$\mu \mathrm{A}$
$\triangle \mathrm{l}_{\mathrm{cc}}$	Increase in I CC per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2.7-3.6		750	$\mu \mathrm{A}$

Note 8: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

Symbol	Parameter	Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Figure Number
				Min	Max		
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	3.3 ± 0.3	250		MHz	
			2.5 ± 0.2	200			
			1.8 ± 0.15	100			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	1.5 ± 0.1	80.0			
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHL}} \\ & t_{\mathrm{PLH}} \end{aligned}$	Propagation Delay A to B or B to A	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	3.8	ns	Figures 1, 2
			2.5 ± 0.2	0.8	4.6		
			1.8 ± 0.15	1.5	9.2		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	18.4		$\begin{array}{\|c} \hline \text { Figures } \\ 7,8 \end{array}$
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay Clock to A or B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	4.4	ns	Figures 1, 2
			2.5 ± 0.2	0.8	5.5		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{gathered} \hline \text { Figures } \\ 7,8 \end{gathered}$
$\begin{aligned} & \mathrm{t}_{\mathrm{PHL}} \\ & \mathrm{t}_{\mathrm{PLH}} \end{aligned}$	Propagation Delay LEBA or LEAB to A or B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	4.4	ns	Figures 1, 2
			2.5 ± 0.2	0.8	5.8		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	1.0	19.6		$\begin{array}{\|c} \hline \text { Figures } \\ 7,8 \end{array}$
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{aligned} & \text { Output Enable Time } \\ & \overline{O E B A} \text { or } \overline{O E A B} \text { to } \mathrm{A} \text { or } \mathrm{B} \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	4.3	ns	Figures 1, 3, 4
			2.5 ± 0.2	0.8	5.9		
			1.8 ± 0.15	1.5	9.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	19.6		Figures 7, 9, 10
$\begin{aligned} & \hline t_{\mathrm{PLZ}} \\ & t_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time$\overline{O E B A}$ or $\overline{O E A B}$ to A or B	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	0.6	4.3	ns	Figures$1,3,4$
			2.5 ± 0.2	0.8	4.9		
			1.8 ± 0.15	1.5	8.8		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1	1.0	17.6		Figures $7,9,10$
t_{s}	Setup Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figure 6
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	2.5			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	3.0			
t_{H}	Hold Time	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.0		ns	Figure 6
			2.5 ± 0.2	1.0			
			1.8 ± 0.15	1.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	2.0			
t_{W}	Pulse Width	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3	1.5		ns	Figure 5
			2.5 ± 0.2	1.5			
			1.8 ± 0.15	4.0			
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	1.5 ± 0.1	4.0			
toshl tosth	Output to Output Skew (Note 10)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	3.3 ± 0.3		0.5	ns	
			2.5 ± 0.2		0.5		
			1.8 ± 0.15		0.75		
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	1.5 ± 0.1		1.5		

Symbol	Parameter	Conditions	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
Symbol	Parameter	Condions	(V)	Typical	
$\overline{\mathrm{V} \text { OLP }}$	Quiet Output Dynamic Peak $V_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & \hline 1.8 \\ & 2.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.15 \\ & 0.25 \\ & 0.35 \\ & \hline \end{aligned}$	V
$\overline{\mathrm{V} \text { OLV }}$	Quiet Output Dynamic Valley V_{OL}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & \hline 1.8 \\ & 2.5 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & -0.15 \\ & -1.25 \\ & -0.35 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\mathrm{OHV}}$	Quiet Output Dynamic Valley V_{OH}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	$\begin{aligned} & 1.8 \\ & 2.5 \\ & 3.3 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.05 \\ 2.65 \end{gathered}$	V
Capacitance					
Symbol	Parameter	Conditions		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text {, or } 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$		6.0	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Output Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$		7.0	pF
$\overline{C_{P D}}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$		20.0	pF

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{Cc}} 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ to $1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$)

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	GND
FIGURE 1. AC Test Circuit	

Symbol	$\mathbf{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

AC Loading and Waveforms ($\mathrm{V}_{\mathrm{cc}} 1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$)

FIGURE 8. Waveform for Inverting and Non-inverting Functions

FIGURE 9. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

FIGURE 10. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$
	$\mathbf{1 . 5 V} \pm \mathbf{0 . 1 V}$
V_{mi}	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	$\mathrm{V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.1 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.1 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

